Also, the $\mathrm{C}(8)-\mathrm{C}(9)$ and $\mathrm{C}(8)-\mathrm{C}(10)$ distances [1.397 (9) and 1.403 (8) \AA, respectively] are shorter than expected, while the $\mathrm{C}(8)-\mathrm{N}(2)$ distance [1.514 (7) \AA] is somewhat longer. These atoms were not as well behaved as the others during the refinement, due either to extreme thermal motion or to disorder. Thus the H associated with $\mathrm{C}(8)$ has been omitted.

This research was supported by the National Science Foundation URP Program (LEM) and in part by the US Department of Energy under Contract No. W-7405-Eng-82, Office of Basic Energy Sciences, Materials Science Division.

References

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.22, p. 71. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Lapp, R. L. \& Jacobson, R. S. (1979). ALLS. A Generalized Crystallographic Least-squares Program. US DOE Rep. IS4708, Iowa State Univ., Ames, Iowa.
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& DeclercQ, J.-P. (1976). MULTAN76. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. of York, England.
Mine, A. \& Matsunaki, S. (1975). Pestic. Biochem. Physiol. 5, 444-450.
Powell, D. R. \& Jacobson, R. A. (1980). FOUR. A General Crystallographic Fourier Program. US DOE Rep. IS-4737, Iowa State Univ., Ames, Iowa.

Structure of Terpin

By Tong-Ing Ho, Ming-Chu Cheng and Shie-Ming Peng*
 Department of Chemistry, National Taiwan University, Taipei, Taiwan

and Fa-Ching Chen and Chi-Chin Tsau
Department of Chemistry, Tamkang University, Tamsui, Taiwan
(Received 27 May 1986; accepted 27 June 1986)

Abstract

Abstact. trans-4-(1-Hydroxyisopropyl)-1-methylcyclo-hexan-1-ol monohydrate, $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=190 \cdot 28$, monoclinic, $C c, a=10.912$ (3), $b=22.791$ (4), $c=$ 10.705 (2) $\AA, \beta=120.64$ (2) ${ }^{\circ}, V=2290.85 \AA^{3}, Z=$ $8, \quad D_{m}=1 \cdot 10(2), \quad D_{x}=1.11 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.7093 \AA, \mu(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.077 \mathrm{~mm}^{-1}, F(000)=848, T$ $=298 \mathrm{~K}$, final $R=0.047$ for 1665 observed reflections. The title compound has the trans configuration with two molecules in the asymmetric unit. The water and trans-terpin molecules form a three-dimensional network connected by hydrogen bonding. $\mathrm{C}-\mathrm{C}$ bonds range from 1.513 (6) to 1.554 (5) \AA and $\mathrm{C}-\mathrm{O}$ bonds from 1.427 (5) to 1.463 (6) \AA; bond angles are normal.

Introduction. Dendrocalamus latiflorus Munro (Ma Bamboo) also called Sinocalamus latiflorus (Munro) or Bambusa latiflorus (Munro) is one of the major natural resources in Taiwan.

Tjon Sie Fat (1978), Chao, Ku, Huang, Lin, Lin \& Pan (1963), Wu, Liu \& Chen (1983), Chen \& Juang (1982) and Lou (1983) have reported studies on the constituents of D. latiflorus. The chemical constituents were reported to be taxiphyllin and β-cellulose.

[^0]0108-2701/86/121787-03\$01.50

We have studied the methanol extract of the stem of D. latiflorus Munro collected at Chia-Yi, Taiwan. The following compounds were isolated and characterized: long-chain alkanes, allantoin, tricin, p-hydroxybenzaldehyde, long-chain carboxylic acids, β-sitosterol, \quad stigmasterol, $\quad \beta$-sitosteroyl $-\beta$-glycopyranoside, stigmasteroyl β-glycopyranoside, acacetin, $2,2^{\prime}, 4,4^{\prime}$ -tetramethyl-trans-stilbene, and an unknown crystal X, $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{3}$, m.p. $375 \cdot 5 \mathrm{~K}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound X shows signals between 1.1 and 1.8 p.p.m. (in CDCl_{3}), its IR spectrum indicates the presence of $\mathrm{O}-\mathrm{H}$ stretching ($3240,3480 \mathrm{~cm}^{-1}$) and $\mathrm{C}-\mathrm{H}$ stretching ($2940 \mathrm{~cm}^{-1}$), and its mass spectrum shows a base peak at 96 and a largest peak at 154 (2\%). Since the spectroscopic data were insufficient for structural identification, a single crystal of compound X was prepared and an X-ray diffraction study was carried out. The unknown X was determined to be trans-terpin.

Experimental. IR spectra were recorded with a JASCO model IRA-1 spectrometer, NMR spectra were recorded at 90 MHz on the Varian EM- 390 spectrometer, and mass spectra were obtained with a JEOL JMS300 mass spectrometer. Separations by column chromatography were carried out on silica gel (Merck, Kieselgel 60, 70-230 mesh).
(c) 1986 International Union of Crystallography

Crystal dimensions: $0.2 \times 0.4 \times 0.6 \mathrm{~mm}$. CAD-4 diffractometer. Unit cell by least-squares refinement of 25 reflections $\left(18<2 \theta<37^{\circ}\right) . D_{m}$ by flotation in n-hexane $/ \mathrm{CCl}_{4} .2 \theta_{\max }=50^{\circ} .-13<h<0,-27<k<$ $0,-12<l<12$. Three standard reflections monitored every 2 h : variation $<3 \%$. 2220 unique reflections, 1665 observed with $I \geq 3 \sigma(I)$. Absorption ignored. $R=$ $0.047, w R=0.037, S=4.04$ based on $F . w=$ $1 / \sigma^{2}\left(F_{\rho}\right)$. Structure solved by direct methods using the MULTAN program with 185 highest E 's, 5 smallest E 's and 913 relationships. H atoms found on difference Fourier map. $(\Delta / \sigma)_{\max }=0.01$. Peaks on final difference map -0.19 to $0.16 \mathrm{e} \AA^{-3}$. Atomic scattering factors from International Tables for X-ray Crystallography (1974). Computing programs: NRCC SDP PDP-11 Package (Gabe \& Lee, 1981), MULTAN and ORTEP from Enraf-Nonius (1979) Structure Determination Package.

Discussion. There are two isomers of terpin, 4-(1-hydroxyisopropyl-1-methylcyclohexan-1-ol, i.e. transterpin and cis-terpin. The cis form was originally assigned as the trans form (Barnes, 1958). The trans form, originally assigned as the cis form, was found in Myrocapus silvestris, Protinium brasiliensis, Chinese anise and sweet fennel oil.

There are two molecules in the asymmetric unit, both appear to be the trans form. The atomic coordinates and the equivalent isotropic temperature factors of the two molecules are listed in Table 1.* The molecular structure and labeling scheme of molecules A and B are shown in Fig. 1. The bond distances and angles are listed in Table 2. All the $\mathrm{C}-\mathrm{C}$ bonds are single bonds ranging from 1.513 (6) to 1.554 (5) \AA, the $\mathrm{C}-\mathrm{O}$ bonds are also single ranging from 1.427 (5) to 1.463 (6) \AA. The bond angles are quite normal.

The trans-terpin and water molecules are connected by three-dimensional hydrogen bonding. The $\mathrm{O} \ldots \mathrm{O}$ distances, listed in Table 3, are between 2.722 (4) and 2.872 (4) \AA.

The authors would like to express their appreciation for the support of this work to the National Science Council both for the research grant and for the use of the CAD-4 diffractometer.

[^1]Table 1. Atomic coordinates and equivalent isotropic temperature factors (\AA^{2})

$B_{\text {eq }}=\frac{8}{3} \pi^{2} \sum_{i} \sum_{j} U_{i j} a_{i} a_{j} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
$\mathrm{C}(1 A)$	0.1117 (4)	0.0888 (2)	0.1557 (4)	$3 \cdot 2$ (2)
C(2A)	0.0953 (5)	0.1558 (2)	0.1543 (4)	3.6 (2)
C(3A)	0.1600 (4)	0.1795 (2)	0.3084 (4)	3.6 (2)
C(4A)	0.3162 (5)	0.1635 (2)	$0 \cdot 4064$ (4)	3.7 (3)
C(5A)	0.3324 (5)	0.0963 (2)	0.4052 (4)	3.9 (3)
C(6A)	0.2677 (5)	0.0722 (2)	0.2509 (5)	4.1 (3)
$\mathrm{C}(7 \mathrm{~A})$	0.0426 (4)	0.0617 (2)	0.0012 (4)	3.8 (2)
$\mathrm{C}(8 A)$	0.0312 (5)	-0.0049 (2)	0.0050 (5)	4.8 (3)
$\mathrm{C}(9 A)$	0.1135 (5)	0.0798 (2)	-0.0820 (5)	$5 \cdot 1$ (3)
$\mathrm{O}(10 \mathrm{~A})$	-0.1037 (3)	0.0832 (1)	-0.0848 (3)	3.8 (2)
$\mathrm{C}(11 A)$	0.3742 (5)	0.1863 (2)	0.5587 (5)	$5 \cdot 1$ (3)
O(12A)	0.3973 (3)	$0 \cdot 1878$ (1)	0.3483 (3)	3.8 (2)
O(13A)	0.3280 (4)	0.3032 (1)	0.2831 (3)	$5 \cdot 8$ (2)
$\mathrm{C}(18)$	0.6588 (4)	$0 \cdot 1613$ (2)	0.2500 (4)	3.4 (3)
C(2B)	0.6431 (5)	0.0941 (2)	0.2507 (4)	$3 \cdot 5$ (3)
$\mathrm{C}(3 B)$	0.5544 (5)	0.0707 (2)	0.0978 (5)	3.7 (3)
C(4B)	0.6118 (4)	0.0867 (2)	-0.0015 (4)	3.7 (3)
C(5B)	0.6291 (5)	0.1534 (2)	-0.0010 (4)	3.7 (3)
C (6B)	0.7189 (5)	0.1777 (2)	0.1535 (5)	4.0 (3)
$\mathrm{C}\left(7{ }^{\text {B }}\right.$	0.7438 (5)	$0 \cdot 1880$ (2)	0.4036 (4)	3.6 (3)
$\mathrm{C}(8 \mathrm{~B})$	0.7309 (5)	0.2545 (2)	0.3988 (5)	$5 \cdot 2$ (4)
C(9B)	0.8991 (5)	0.1701 (2)	0.4869 (5)	$5 \cdot 1$ (3)
$\mathrm{O}(10 \mathrm{~B})$	0.6828 (3)	$0 \cdot 1667$ (1)	0.4886 (3)	3.6 (2)
C(11B)	0.5183 (5)	0.0639 (2)	-0.1543 (5)	$5 \cdot 2$ (3)
O(12B)	0.7515 (3)	0.0619 (1)	0.0560 (3)	3.9 (2)
O(13B)	0.7503 (4)	0.9469 (1)	$0 \cdot 1238$ (4)	$5 \cdot 8$ (2)

(a)

(b)

Fig. 1. Structure of (a) molecule A and (b) molecule B.

Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{C}(1 A)-\mathrm{C}(2 A) \quad 1.537$	1.537 (5)	$\mathrm{C}(1 B)-\mathrm{C}(6 B) \quad 1.52$	1.525 (5)
$\mathrm{C}(2 A)-\mathrm{C}(3 A) \quad 1.525$	1.525 (5)	$\mathrm{C}(3 B)-\mathrm{C}(4 B) \quad 1.527$	1.527 (5)
$\mathrm{C}(4 A)-\mathrm{C}(11 A) \quad 1.509$	1.509 (5)	$\mathrm{C}(4 B)-\mathrm{O}(12 B) \quad 1.438$	1.438 (5)
$\mathrm{C}(7 A)-\mathrm{C}(8 A) \quad 1.525$	1.525 (6)	$\mathrm{C}(7 B)-\mathrm{C}(9 B) \quad 1.5$	1.514 (6)
$\mathrm{C}(1 B)-\mathrm{C}(2 B) \quad 1.543$	1.543 (5)	$\mathrm{C}(1 A)-\mathrm{C}(7 A) \quad 1.55$	1.554 (5)
$\mathrm{C}(2 B)-\mathrm{C}(3 B) \quad 1.513$	1.513 (5)	$\mathrm{C}(4 A)-\mathrm{C}(5 A) \quad 1.5$	1.544 (6)
$\mathrm{C}(4 B)-\mathrm{C}(11 B) \quad 1.513$	1.513 (6)	$\mathrm{C}(5 A)-\mathrm{C}(6 A) \quad 1.53$	1.530 (6)
$\mathrm{C}(7 B)-\mathrm{C}(8 B) \quad 1.520$	1.520 (6)	$\mathrm{C}(7 A)-\mathrm{O}(10 A) \quad 1.46$	1.463 (5)
$\mathrm{C}(1 A)-\mathrm{C}(6 A) \quad 1.520$	1.520 (6)	$\mathrm{C}(1 B)-\mathrm{C}(7 B) \quad 1.53$	1.543 (5)
$\mathrm{C}(3 A)-\mathrm{C}(4 A) \quad 1.521$	1.521 (5)	$\mathrm{C}(4 B)-\mathrm{C}(5 B) \quad 1.531$	1.531 (6)
$\mathrm{C}(4 A)-\mathrm{O}(12 A) \quad 1.427$	1.427 (5)	$\mathrm{C}(5 B)-\mathrm{C}(6 B) \quad 1.53$	1.534 (6)
$\mathbf{C}(7 A)-\mathrm{C}(9 A) \quad 1.504$	1.504 (6)	$\mathrm{C}(7 B)-\mathrm{O}(10 \mathrm{~B}) \quad 1.45$	1.458 (4)
$\mathrm{C}(2 A)-\mathrm{C}(1 A)-\mathrm{C}(6 A)$	109.8 (3)	$\mathrm{C}(2 A)-\mathrm{C}(1 A)-\mathrm{C}(7 A)$	$113 \cdot 2$ (2)
$\mathrm{C}(6 A)-\mathrm{C}(1 A)-\mathrm{C}(7 A)$	112.6 (3)	$\mathrm{C}(1 A)-\mathrm{C}(2 A)-\mathrm{C}(3 A)$	110.7 (3)
$\mathrm{C}(2 A)-\mathrm{C}(3 A)-\mathrm{C}(4 A)$	113.6 (3)	$\mathrm{C}(3 A)-\mathrm{C}(4 A)-\mathrm{C}(5 A)$	108.9 (3)
$\mathrm{C}(3 A)-\mathrm{C}(4 A)-\mathrm{C}(11 A)$	111.6 (3)	$\mathrm{C}(3 A)-\mathrm{C}(4 A)-\mathrm{O}(12 A)$	109.4 (3)
$\mathrm{C}(5 A)-\mathrm{C}(4 A)-\mathrm{C}(11 A)$	111.3 (3)	$\mathrm{C}(5 A)-\mathrm{C}(4 A)-\mathrm{O}(12 A)$	106.4 (3)
$\mathrm{C}(11 A)-\mathrm{C}(4 A)-\mathrm{O}(12 A)$	109.0 (3)	$\mathrm{C}(4 A)-\mathrm{C}(5 A)-\mathrm{C}(6 A)$	112.0 (3)
$\mathrm{C}(1 A)-\mathrm{C}(6 A)-\mathrm{C}(5 A)$	112.2 (3)	$\mathrm{C}(1 A)-\mathrm{C}(7 A)-\mathrm{C}(8 A)$	111.7 (3)
$\mathrm{C}(1 A)-\mathrm{C}(7 A)-\mathrm{C}(9 A)$	113.9 (3)	$\mathrm{C}(1 A)-\mathrm{C}(7 A)-\mathrm{O}(10 A)$	108.5 (3)
$\mathrm{C}(8 A)-\mathrm{C}(7 A)-\mathrm{C}(9 A)$	111.3 (3)	$\mathrm{C}(8 A)-\mathrm{C}(7 A)-\mathrm{O}(10 A)$	105.9 (3)
$\mathrm{C}(9 A)-\mathrm{C}(7 A)-\mathrm{O}(10 A)$	$105 \cdot 1$ (3)	$\mathrm{C}(2 B)-\mathrm{C}(1 B)-\mathrm{C}(6 B)$	109.5 (3)
$\mathrm{C}(2 B)-\mathrm{C}(1 B)-\mathrm{C}(7 B)$	113.2 (3)	$\mathrm{C}(6 B)-\mathrm{C}(1 B)-\mathrm{C}(7 B)$	113.2 (3)
$\mathrm{C}(1 B)-\mathrm{C}(2 B)-\mathrm{C}(3 B)$	110.9 (3)	$\mathrm{C}(2 B)-\mathrm{C}(3 B)-\mathrm{C}(4 B)$	113.9 (3)
$\mathrm{C}(3 B)-\mathrm{C}(4 B)-\mathrm{C}(5 B)$	109.3 (3)	$\mathrm{C}(3 B)-\mathrm{C}(4 B)-\mathrm{C}(11 B)$	112.3 (3)
$\mathrm{C}(3 B)-\mathrm{C}(4 B)-\mathrm{O}(12 B)$	109.2 (3)	$\mathrm{C}(5 B)-\mathrm{C}(4 B)-\mathrm{C}(11 B)$	111.1 (3)
$\mathrm{C}(5 B)-\mathrm{C}(4 B)-\mathrm{O}(12 B)$	106.7 (3)	$\mathrm{C}(11 B)-\mathrm{C}(4 B)-\mathrm{O}(12 B)$	108.1 (3)
$\mathrm{C}(4 B)-\mathrm{C}(5 B)-\mathrm{C}(6 B)$	111.9 (3)	$\mathrm{C}(1 B)-\mathrm{C}(6 B)-\mathrm{C}(5 B)$	112.5 (3)
$\mathrm{C}\left(1 B^{\prime}-\mathrm{C}(7 B)-\mathrm{C}(8 B)\right.$	111.2 (3)	$\mathrm{C}(1 B)-\mathrm{C}(7 B)-\mathrm{C}(9 B)$	114.0 (3)
$\mathrm{C}(1 B)-\mathrm{C}(7 B)-\mathrm{O}(10 B)$	108.5 (3)	$\mathrm{C}(8 B)-\mathrm{C}(7 B)-\mathrm{C}(9 B)$	$110 \cdot 1$ (3)
$\mathrm{C}(8 B)-\mathrm{C}(7 B)-\mathrm{O}(10 B)$	$106 \cdot 8$ (3)	$\mathrm{C}(9 B)-\mathrm{C}(7 B)-\mathrm{O}(10 B)$	$105 \cdot 8$ (3)

Table 3. The $\mathrm{O} \cdots \mathrm{O}$ distances (\AA) in the unit cell

$\mathrm{O}(10 A)-\mathrm{O}(13 A A)$	$2.861(4)$	$\mathrm{O}(12 A)-\mathrm{O}(10 B)$	$2.725(4)$
$\mathrm{O}(10 A-\mathrm{O}(12 A)$	$2.727(4)$	$\mathrm{O}(13 A)-\mathrm{O}(10 A)$	$2.861(4)$
$\mathrm{O}(10 A)-\mathrm{O}(13 B)$	$2.770(4)$	$\mathrm{O}(13 A)-\mathrm{O}(12 A)$	$2.727(4)$
$\mathrm{O}(12 A)-\mathrm{O}(13 A)$	$2.727(4)$	$\mathrm{O}(13 A)-\mathrm{O}(10 B)$	$2.798(4)$
$\mathrm{O}(10 B)-\mathrm{O}(12 A)$	$2.725(4)$	$\mathrm{O}(12 B)-\mathrm{O}(13 B)$	$2.722(4)$
$\mathrm{O}(10 B)-\mathrm{O}(13 A)$	$2.798(4)$	$\mathrm{O}(13 B)-\mathrm{O}(10 A)$	$2.770(4)$
$\mathrm{O}(10 B)-\mathrm{O}(13 B)$	$2.872(4)$	$\mathrm{O}(13 B)-\mathrm{O}(10 B)$	$2.872(4)$
$\mathrm{O}(12 B)-\mathrm{O}(10 A)$	$2.727(4)$	$\mathrm{O}(13 B)-\mathrm{O}(12 B)$	$2.722(4)$

References

Barnes, C. S. (1958). Aust. J. Chem. 11, 134-146.
Chao, S. C., Ku, Y. C., Huang, L. Y., Lin, T. N., Lin, S. C. \& Pan, T. T. (1963). Taiwan Lin Yeh Shih Yen So Pao Kao, No. 90, pp. 1-12.
Chen, T. L. \& Juang, T. J. (1982). K'o Hsueh Fa Chan Yueh K'an, 10(3), 264-271.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft.
Gabe, E. J. \& Lee, F. L. (1981). Acta Cryst. A37, S339.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Lou, K. C. (1983). MSc Thesis, Tamkang Univ.
Tjon Sie Fat, L. (1978). Proc. K. Ned. Akad. Wet. Ser. C, 81(3), 347-354.
Wu, C. M., Lru, W. L. \& Chen, C. C. (1983). Instrum. Anal. Foods: Recent Prog., Proc. Symp. 3rd Int. Flavor Conf., pp. 303-314.

Acta Cryst. (1986). C42, 1789-1792

Structure of \boldsymbol{p}-Chlorophenyl(phenylseleno)acetylene

By S. Husebye, E. A. Meyers and R. A. Zingaro
Department of Chemistry, Texas A\&M University, College Station, Texas 77843, USA

and A. L. Braga, J. V. Comasseto and N. Petragnani Instituto de Química, Universidade de São Paulo, Caixa Postal 20.780, São Paulo, Brazil

(Received 8 July 1985; accepted 25 June 1986)

Abstract

C}_{14} \mathrm{H}_{9} \mathrm{ClSe}, M_{r}=291 \cdot 6\), monoclinic, $P 2_{1}$, $a=7.270$ (2),$\quad b=5.835$ (3); $c=14.550$ (6) $\AA, \quad \beta=$ $100.83(3)^{\circ}, \quad V=606.3 \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.597 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $3.25 \mathrm{~mm}^{-1}, F(000)=288, T=296 \mathrm{~K}$, final $R=0.048$ for 1309 unique observed reflections. The structure consists of molecules of $p-\mathrm{ClPhC} \equiv \mathrm{CSePh}$ possibly connected by very weak, secondary $\mathrm{Se} \cdots \mathrm{Cl}$ bonds of 3.704 (2) \AA into zigzag chains parallel to the $a b$ plane. In the nearly linear $\mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Se}-$ sequence, the bond lengths are $1.446(9), 1.174(10)$ and 1.836 (7) \AA, respectively, while $\quad \mathrm{Se}-\mathrm{C}(\mathrm{Ph})=$ 1.915 (5) \AA and angle $\mathrm{C}-\mathrm{Se}-\mathrm{C}=98.4$ (3) ${ }^{\circ}$.

Introduction. We recently determined the structure of a Wittig-reaction intermediate, phenacyl- α-(phenylseleno)triphenylphosphorane (Husebye, Meyers, Zingaro, Braga, Comasseto \& Petragnani, 1986). Heating this compound under vacuum results in the formation of a phenylselenoacetylene and triphenylphosphine oxide (Braga, Comasseto \& Petragnani, 1984). The present study was undertaken in order to learn something about the structure of molecules in which Se is bonded directly to an acetylenic C atom.

Experimental. The preparation of p-chlorophenyl(phenylseleno)acetylene has previously been reported
© 1986 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of anisotropic thermal parameters, structure factors and H -atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43195 (17 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

